

EGY Plasma

Classification of plasma forces and species

Waleed Moslem

Aim of the lecture

You should learn

- Types of plasma
- Plasma components
- Forces in plasma
- Examples
- Comparison between forces

Types of plasmas

• (I) Classical plasma

+ve ions / electrons / -ve ions / positrons

• (II) Dusty (complex) plasma

+ve dust / -ve dust / +ve ions / electrons / -ve ions

• (III) Quantum plasma

Electrons / positrons / holes / +ve ions

Forces in plasma

- Inertial force
- Electric force
- Magnetic force
- Pressure gradient force
- Collisional force
- Drag force
- Corilis force
- Ponderomotive force

- Viscosity
- Tunnling force
- Exchange-correlation force
- Gravitational force
- Thermophoretic force
- Radiation pressure force
- Diffusion force
- 15 Forces

Inertial Force

- 17th Century: Isaac Newton introduced the concept of inertia in his first law of motion, laying the groundwork for understanding inertial forces.
- Early 20th Century: Inertial forces were recognized as key factors in the behavior of high-speed particles, contributing to early plasma studies.
- 1930s: The development of magnetohydrodynamics (MHD) highlighted the importance of inertial forces in plasma dynamics.
- 1960s: Advances in space exploration and nuclear fusion research emphasized the role of inertial forces in plasma confinement and stability.

Inertial Force

- **Definition:** Inertial force is the force required to change the motion of a mass, crucial in understanding plasma behavior.
- Equation: Force = $mass \times acceleration$, where inertia is the resistance to acceleration.
- Plasma Confinement: Inertial forces help contain plasma in magnetic and inertial confinement fusion devices.
- Wave Propagation: Inertial forces affect the propagation of waves in plasma, essential for communication and diagnostics.
- Instability Analysis: Understanding inertial forces aids in analyzing and mitigating plasma instabilities.

Inertial Force

- To understand how dark matter is proven to exist, we need to examine the discrepancies between observed gravitational effects and the amount of visible matter in the universe.
- Newton's second law
- Newton's law of gravitation
- The speed of the Sun's rotation around the center of the galaxy: 220 km/s.
- Radius of the Sun's orbit around the center of the galaxy: about 30,000 light-years (approximately 9.5×10^{16} km)

• **Definition**: A difference in pressure inside a plasma creates the pressure gradient force, which moves particles from high-pressure regions to low-pressure regions.

Equilibrium and Stability:

- Force Balance: Pressure gradient force balances other forces (e.g., magnetic tension, inertial forces) in plasma, maintaining equilibrium.
- Stability Analysis: Helps in understanding instabilities such as the Rayleigh-Taylor instability.

When the lighter fluid is pushing the heavier fluid

Equilibrium and Stability:

- Force Balance: Pressure gradient force balances other forces (e.g., magnetic tension, inertial forces) in plasma, maintaining equilibrium.
- Stability Analysis: Helps in understanding instabilities such as the Rayleigh-Taylor instability.

When the lighter fluid is pushing the heavier fluid

Plasma Confinement:

- Magnetic Confinement:

 Pressure gradients are
 crucial in maintaining the
 equilibrium of confined
 plasma, influencing the
 shape and stability of the
 confinement.
- Inertial Confinement: In ICF, pressure gradients drive the implosion of the fuel pellet.

Basic Principle of Ponderomotive Force

- When charged particles are placed in an oscillating electromagnetic field, they experience rapidly changing forces.
- The ponderomotive force is the time-averaged effect of these oscillations, resulting in a net force.
- This net force pushes particles away from regions of higher field intensity.

Definition: The ponderomotive force is a nonlinear force experienced by a charged particle in an oscillating electromagnetic field (like laser or RF field). This force pushes the particle toward lower field strengths.

$$\mathbf{F}_p = -rac{q^2}{4m\omega^2}
abla E^2$$

q: Charge of the particle

m: Mass of the particle

 ω : Angular frequency of the oscillating field

E: Electric field strength

Applications: Particle Acceleration

- Overview: Particle accelerators are used to speed up charged particles to high velocities for various applications, including scientific research and medical treatments.
- Ponderomotive Force: Pushes particles along selected directions to accelerate.
- Focuses particle beams and reduces beam divergence, enhancing accelerator efficiency.

- **Definition:** Collisional force in plasma physics refers to the interactions between charged particles (ions and electrons) that result in momentum transfer and energy dissipation.
- Types of Collisions:
- Elastic Collisions are interactions between particles where the total kinetic energy and momentum are conserved.
- Characteristics: No loss of kinetic energy & Particles merely change direction and possibly speed, but the total kinetic energy remains the same.

- Types of Collisions:
- Inelastic Collisions transform part of the colliding particles' kinetic energy into internal energy, excitation, or ionization.
- Importance: Inelastic collisions play a crucial role in energy transfer, ionization processes, and plasma dynamics.
- Collision Frequency: Number of collisions per unit time.
- Inverse of Collision Frequency = Collision time-scale
- Mean Free Path: Average distance a particle travels between collisions.

$$u_{ei} = rac{4\sqrt{2\pi}}{3} rac{n_i e^4 \ln \Lambda}{(4\pi\epsilon_0)^2 m_e^{1/2} (k_B T_e)^{3/2}}$$

- Collisions in space, laboratory, stars....??
- Density increase --> collision frequency --> collision time
- Temperature increase --> collision frequency --> collision time
- We have a time-scale to compare but with what???
 - 1. $\lambda_{\rm D} \ll L$.
 - 2. $N_{\rm D} \gg 1$.
 - 3. $\omega \tau > 1$.

Importance of Collisional Force in plasma

- Plasma Confinement & Impurity Control
- Diagnostics: Techniques like Langmuir probes measure collisional parameters.
- Space Plasmas: Observations of space plasmas provide insights into natural collisional processes such as solar wind interaction with planets.
- Collisions play a significant role in energy transport within stars.
- Interstellar Medium: Collisional interactions affect the dynamics and chemistry of the interstellar medium.

Comparison Between Forces

Comparison Between Forces

Boltzmann relation for electrons

$$mn\left[\frac{\partial v_z}{\partial t} + (\mathbf{v} \cdot \nabla)v_z\right] = qnE_z - \frac{\partial p}{\partial z}$$

$$\frac{\partial v_z}{\partial t} = \frac{q}{m} E_z - \frac{\gamma KT}{mn} \frac{\partial n}{\partial z} \qquad \begin{array}{c} \mathbf{E} = -\nabla \phi \\ m \to 0 \quad q = -e \end{array}$$

$$qE_z = e \frac{\partial \phi}{\partial z} = \frac{\gamma K T_e}{n} \frac{\partial n}{\partial z}$$

$$n = n_0 \exp(e\phi/KT_e)$$

Comparison Between Forces

Cold plasma

Approximation: Ignore thermal motion of particles

'Cold Plasma'
$$\nabla p = 0 \quad (e.g. \ T \simeq 0)$$

$$m_e N_e \left[\frac{\partial \mathbf{u}_e}{\partial t} + (\mathbf{u}_e \cdot \nabla) \mathbf{u}_e \right] = -\nabla p_e + q_e N_e (\mathbf{E} + \mathbf{u}_e \times \mathbf{B})$$

Generally requires wave phase velocity $\gg v_{\rm thermal}$

Prove it in the H.W.

Summary

	Terminology		Concep	t
•	Plasma components	•	????	
•	Time scale	•	????	
•	Forces in plasma	•	????	
•	Inertial force	•	????	
•	Pressure gradient force	•	????	
•	Ponderomotive force	•	????	
•	Collisional force	•	????	
•	Collision frequency and Collision time-scale	•	????	
•	Comparison between forces	•	????	26 / 26