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Debye length 
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 The Debye radius is the distance at which the potential of an ion 

charge is decreased by 0.37 of its value in free space.

 In ideal plasma the number of  charges         in the Debye 

sphere must be large. 
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Debye length 
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 In a plasma with electron temperature                                and 

electron density                                 , the number of particles in 

Debye sphere is               .

 In Hot Dense Plasma: the number of particles in Debye sphere 

is 4 when                           and                               .

 In Warm Dense plasma, the number of charges in Debye 

sphere might be less than 1.

 Note: WDM does not obey the plasma state theories.



Collision frequency 
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 In a simple model where ions are assumed to be immobile, the 

electron ion collision frequency is given as

 Coulomb logarithm

 For WDM the collision frequency is negative value.



Conductivity I
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 From the generalized Ohm’s law

 The current density in an ideal plasma is proportional to the 

applied electric field.

 At constant density:



Conductivity II
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 The plasma conductivity

1-100 eV

Ideal Plasma regime

Solid-state Al density

Solid state regime

WHDM regime

I II III



Free electron gas theory

8

 Fermi-Dirac Distribution

 For solid state density: 



Conductivity III
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 The conductivity of a metal decreases by increasing the 

temperature.

1-100 eV

Ideal Plasma regime

Solid-state Al density

Solid state regime

WHDM regime

I II III



Warm Dense Matter 
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 WDM: 

 Temperature of few 

electronvolts

 Solid state density and 

beyond

 ICF, shock experiments, giant 

planets, and brown dwarfs

 Theories of solid, condensed 

matter, or ideal plasma are 

not valid

 No single theoretical model 

describes the behavior of 

WDM 

 Partial ionization

 Arbitrary degeneracy

 Strong ionic correlations

K. Wünsch

Glenzer et al PRL 98 065002(2007)



WDM in Laboratory
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Metallic Hydrogen in Jupiter 
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Transparent Aluminum

13Nagler et al, nature physics  5, 693(2009)

1986



WDM parameters I 
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 The coupling factor:  



WDM parameters II 
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 The degeneracy factor:  

 When              , most electrons populate states in Fermi see. 

Quantum effects are important.

 The screening length or Debye length must be calculated from 

Fermi distribution not form Maxwell-Boltzmann distribution like in 

ideal plasma.



Dispersion relation of EM in 

WDM 

Warwick UK

reflection

 At the natural plasma oscillation:

 At the cut off, the wave is reflected:

 WDM is transparent in x-ray regime:

X-ray 

Optical laser 



 The first seed of electrons are generated via MPI, Tunnel 

ionization, or , BSI.

 The free electrons gain energy from the laser electric field, then 

make further ionization by collision with neutral particles in the 

target.

Plasma creation over solid targets
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Nano-second optical laser

Shock 

Compression

nSolid

Critical density

Laser Pulse

Hot electrons

X-Ray



Shock waves and compression



Shock waves and compression



Shock waves and compression



Shock waves and compression



Surface waves



 Thomson scattering has two distinct 

features:

 Inelastic scattering (frequency 

shifted) from  free electrons and 

bound free transitions

 Unshifted Rayleigh peak 

(elastic) due to electrons co-

moving with the ions

 The electrons in partially ioized 

system can be split into bound and 

free electrons

 Intermediate scattering function

X-ray Thomson scattering 
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A. Höll et al., HEDP 3, 120(2007)



 Fluctuation-dissipation theorem :

 RPA gien by Lindhard:

 Mermin ansatz :

 is the  dynamic collision frequency via Born approximation.

Born-Mermin approximation
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Glenzer and Redmer,  RMP 81, 1625(2009)



Back and forward scattering
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 Dimensionless scattering 

parameter

 is the electron density 

fluctuation 

 is the screening length 

 Collective scattering:  (            ) 

 the scattering reflects the 

electron density fluctuations

 Plasmon  features

 Non-collective scattering:(          ) 

 the scattering reflects the 

velocity distribution of 

electrons

 Compton features

Glenzer and Redmer,  RMP 81, 1625(2009)

 The momentum transfer 

depends on the scattering angle



 The target is heated and 

compressed via laser beams

 Laser beams launch shock 

waves 

 Pressure inside the target in the 

range of                         Mbar 

 A backlighters (probe laser 

pulse) irradiate a Mn target to 

produce a Mn-He- line

 x-ray (6.2 KeV) penetrates the 

target and scattered off the 

target

H.J. Lee  et al., PRL 102, 115001 (2009)

Set up of an experiment



Experimental results and 

synthetic spectra I
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 Forward scattering: collective 

behavior

 Dispersion relation determines 

the electron density

 Detailed balance gives the 

electron  temperature

Glenzer et al., PRL 98, 065002(2007)
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Experimental results and 

synthetic spectra II
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 Back scattering: 

 Compton scattering                 

 Non-collective behavior 

 Line width      Fermi energy 

Glenzer et al., PRL 90, 175002(2003)



XRFEL experiment  
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S.H. Glenzer et al., (2016): Stanford University



Free electron laser

The free electron laser (FEL) is a device that transforms the kinetic energy of a

relativistic electron beam into electromagnetic (EM) radiation.

Electrons in an FEL are not

bound to atoms or molecules.

The “free” electrons traverse

a series of alternating magnets,

called a “wiggler,” and radiate

light at wavelengths depending

on electrons’ energy, wiggler

period and magnetic field.



Tremendous XFEL intensity

Fletcher et al, Nature Photonics 2015



Density Functional Theory

 1920:  Introduction of the Thomas-Fermi model.

 1964:    Hohenberg-Kohn paper proving existence of exact DF.

 1965:    Kohn-Sham scheme introduced. 

 1970 and early 80s:  LDA.  DFT becomes useful.

 1985:  Incorporation of DFT into molecular dynamics (Car-Parrinello)

 (Now one of PRL’s top 10 cited papers).

 1988:  Becke and LYP functionals.  DFT useful for some chemistry.

 1998:  Nobel prize awarded to Walter Kohn in chemistry for     

development of DFT.



 Have you solved Schrodinger equation for Hydrogen Atom?

 K.E.            P.E.

 Is there an exact solution for complex systems?

Motivation



Hamiltonian of a molecule

 In a molecule we have many electrons and many nuclei.

 According to Born-Openheimer approximations: nuclei are very slow 

and their kinetic motion are negligible.

 The Hamiltonian should contain

 The kinetic energy of electrons

 Potential energy due to electron-electron interactions.

 Potential energy due to electron-nucleus interactions.





 K.E.                                    e-e                                              e-n

 Is there an exact solution for complex systems?



Hohenberg Kohn Theory

 We cannot have two different systems with the same Ground 

State density.

 The ground state density is a unique function of the nuclei 

distribution. It is one-to-one relationship.

 The electrons will be distributed according to the nuclei 

distribution.

 The ground state density is related to the minimum energy of 

the system.



Kohn-Sham Scheme

 The potential energy

 Schrodinger equation

 The ground state density

The ground state is related to minimum energy 

 Functional: function of a function



Kohn-Sham Scheme

 Guess an initial density  

 Solve Schrodinger equation for       and       .

 Calculate the density state      Is it ground state?

The ground state is related to minimum energy 

 Functional: function of a function



Wien2K software

 TiC in the sodium chloride structure

 The electron density of TiC in

(110) 



Wien2K software



DFT-MD



DFT-MD

Solid Aluminum Melting Phase WDM



Thanks!


