

Kafrelsheikh University Faculty of science physics Department

Thesis Title

"Simulation of Geometrically and Electrically Asymmetric Plasma Discharges"

Demonstrator at Physics Department

Prof. Dr. Abdelhamid Elshaer

Professor of Material Science – Student Affairs Agent – Faculty of Science – Kafr Elsheikh University.

Assistant. Prof. Dr. Mohammed Shihab

Assistant Professor of Plasma Physics, Physics Department, Faculty of Science, Tanta University.

Dr. Nagat Elkahwagy

Lecturer of Theoretical Physics, Physics Department, Faculty of Science, Kafr Elsheikh University.

• 2

- **1. Introduction to plasma.**
- 2. How to generate plasma.
- 3. Capacitively coupled plasma.
- 4. Objective of the work.
- 5. Simulation method (PIC).
- 6. Pre-results
 - 6.1 Geometrically asymmetric plasma.
 - 6.2 Electrically asymmetric plasma.
 - 6.3 Geometrically and Electrically asymmetric Plasma.
- 7. Statistical Analysis and Empirical Formula.

8. Deposition of Al_2O_3 on FTo substrates by DC Magnetron Sputtering.

Introduction to plasma

Plasma

3.00m

 very high KE - particles collide with enough energy to break into charged particles (+/-)

6

- -gas-like, variable shape & volume
- stars, fluorescent light bulbs

HOW TO GENERATE PLASMA

Capacitively Coupled Plasma

Inductively Coupled Plasma

Fig.(1): Schematic of capacitively coupled plasma system

Fig. (2): Schematic of inductive coupled plasma system

Capacitively coupled plasma

• A capacitively coupled plasma (CCP) It essentially consists of two metal electrodes separated by a small distance, placed in a reactor. The gas pressure in the reactor can be lower than atmosphere or it can be atmospheric.

Fig.(3): A schematic of a capacitive discharge.

Objective of the work

- Study numerically, the geometrically and electrically asymmetric discharges at different conditions employing a Particle-in-Cell code.
- Plot the results and making statistical analysis for the ion energy distribution, ion angular distribution, the sheath potential, plasma particles fluxes, and the charge distribution.
- Concluding the results in form of empirical formula to correlate the degree of asymmetry of the discharge on the plasma and the reactor parameters.

Simulation Method

Particle-in-Cell method: It is a computationally expensive tool, where the plasma dynamics is calculated based on the solution of the equation of motion of plasma particles in a self-consistent way

with plasma fields.

Simulation domain

Fig.(4): A schematic flow chart of PIC modules. The dashed lines are to short cut Monte-Carlo calculations for collisionless plasma.

Fig.(5): The discretization of the simulation domain into kth grids.

Convergence

Fig.(6): (a) Convergence for gap size 0.03 between the two electrodes, (b) Convergence for gap size 0.04 between the two electrodes.

Geometrically asymmetric plasma

Industrial plasma sources are often geometrically asymmetric, i.e., the surface areas of the powered and grounded electrode, A.p. and A.g., are not equal.

Fig.(7): Sketch of the discharge geometry including the rf current paths arrows.

Pre-results

6.1 pre-result for geometrically asymmetric Capacitively Coupled Plasma.

Table (1): represents input parameters for geometrically asymmetricCCP with inner electrode 0.02 m and number of grids 229

Gap size[m]	Number of RF cycles[Hz]
0.03	5000
0.04	5000
0.05	5000
0.06	5000
0.07	5000
0.08	5000
0.09	6000
0.1	6000
0.11	7000

The first case

Fig.(8): Represents the density of ions and electrons in respect to the distance away from the electrodes.

Fig.(10): Represents the ion angular distribution function as a function of angle of incident ions on the inner and outer electrode.

Fig.(9): Represents the electric field of the inner and outer electrodes.

Fig.(11): Represents ion energy distribution function as a function of energy.

Electrically asymmetric plasma

• A dual-frequency voltage source of 13.56 MHz and 27.12 MHz is applied to the powered electrode and the discharge symmetry is controlled by adjusting the phase angle θ between the two harmonics.

Schematic of capacitively coupled plasma system

6.2 Pre- result in Electrically Asymmetric CCP

Comparison between the five runs with phase shifts 45°, 135°, 180°, 225°, 270°. For phase shift 45° we have

Fig.(12): Represents the density of ions and electrons in respect to the distance away from the electrodes.

Fig.(14): Represents the ion angular distribution function as a function of angle of incident ions on the inner and outer electrode.

Fig.(13): Represents the electric field of the inner and outer electrodes.

Fig.(15): Represents ion energy distribution function as a function of energy.

Geometrically and Electrically asymmetric Capacitively Coupled Plasma

Table (2): represents input parameters for geometrically and electrically asymmetric CCP with Left electrode frequency1= 27.12 [MHz], left electrode frequency2 = 13.56[MHz]

, number of grids= 229 and radio frequency cycles= 5000 Hz.

Gap between the inner and outer electrode [m]	Inner electrode [m]	Phase angle [degree]
0.03	0.02	0º
0.03	0.02	45 <u>°</u>
0.03	0.02	<u>90°</u>

Charge Density Comparison

Fig.(16): represents the electric field of the inner and outer electrodes. (a) for phase angle= 0° . (b) for Phase angle = 45°

Statistical Analysis

- Mean
- Median
- Mode
- Variance
- Standard deviation

Measures of Central Tendency, Mean, Median & Mode

Moments

Statistical Moments: the shape of boundary segments can be described quantitatively by using statistical moments, mean ,variance and higher order moments as skewness and kurtosis.

For ungrouped data: $\mu_r = 1/n^* \sum (x - \overline{x})^r$ r=1,2,3,4....

Co-efficient of Skewness and Kurtosis using Moments

Co-efficient of Skewness

 $\beta_1 = \frac{\mu_3^2}{\mu_3^3}$

Kurtosis

$$\beta_2 = \frac{\mu_4}{{\mu_2}^2}$$

Skewness and Kurtosis

Geometrically asymmetric discharges are visited to

quantify an accurate empirical formula.

- The analytical models expect an inverse relation between the sheath potential and the electrode area with different powers ($V_{sh} \propto A^{-\alpha}$).
- The matrix sheath model, Child collisionless sheath model, and Child collisional-sheath model expect a power (a) of 2, 4, and 2.5, respectively.
- Particle-in-Cell simulation expects a power of ~ 0.53 .

Calculation of alpha

Fig. 17 (Left) The sheath potential as a function of the electrode area at pressures 1, 5, and 25 Pas and a driven frequency of 13.56 MHz. (Right) The electrode potential as a function of the electrode area at pressures 1, 5, and 25 Pas and a driven frequency of 27.12 MHz.

Deposition of Al_2O_3 on FTo substrates by DC Magnetron Sputtering.

- We prepare (Al2O3) films on substrate of FTo by using plasma magnetron sputtering technique.
- We study the structural and optical properties for the prepared films with different thicknesses.

Fig. (18): The reflectance spectrum of Al2O3 films in different mediums.

In summary

- Particle in cell method is employed to simulate geometrically and electrically asymmetric Capacitively Coupled Plasma.
- □ Simulated results are with good agreement with other published papers.
- □ The parameters for the simulation were validated with the curves of convergence.
- Simulated results for geometrically and electrically asymmetric CCP showed that there are asymmetry and that ions hit the inner electrode with higher energy than outer electrode.
- The sheath of inner electrode is larger than outer electrode. Substrates over the inner electrode may allow plasma etching.
- □ Statistical analysis calculated to get an empirical formula.
- □ Calculate the empirical formula power.
- **\Box** Formation of Al_2O_3 films by DC Magnetron Sputtering.

