

Dense plasma focus (DPF) and its applications

By Mohamed I. Ismail College of Engineering Egypt University of Informatics

Outline

- Introduction to dense plasma focus devices.
- (KSU-DPF) device.
- Characterization of the device.
- Applications
 - Radiography and explosive detection

Dense **plasma** focus (DPF)

- DPF is a coaxial plasma accelerator that generates, accelerates and pinches a plasma by self-generated magnetic forces.
- DPF is a rich source of the following energetic radiations
 - Fast electrons (0.01 -1MeV)
 - Fast ions (0.01-100 MeV)
 - Soft (0.1-10 keV) and hard X rays (10-1000 keV)
 - Monoenergeic fusion neutrons

(2.45 MeV for D-D reactions or 14.1 MeV for D-T reactions).

• Independently discovered in the early 6os by Mather in the USA and Filippov in the former Soviet Union.

DPF Applications

- Nuclear Fusion energy source (not yet)
- Fast Neutron Activation Analysis
- •Neutron Radiography
- •X-ray radiography (hard x-ray)
- Lithography
- Material Science (deposition, modification, implantation)

http://lawrencevilleplasmaphysics.com/

Outline

- Introduction to dense plasma focus, construction and dynamins.
- KSU-DPF specifications and characterization.
- X-ray emission characteristics of the KSU-DPF.
- Introduction to explosive detection methods.
- Signature- based radiation scanning (SBRS).
- Experimental work for explosive detection.
- Simulation.
- Conclusion.

KSU-DPF

Anode

Cathode

Insulator

Different anode shapes & materials

Diagnostic tools

Rogowski coil

Voltage probe Northstar HV₅ 80 MHz Four channels PIN diode BPX65

BC-418 (2×1 in) plastic scintillator, HAMAMATSU PMT, model H7195.

Canberra $(3 \times 3 \text{ in })$ NaI(Tl) scintillator, 3M3/3-X

7000 series Tektronix DPO Oscilloscope

Bubble

detector

³He detector

Faraday cups (SMA female connectors)

⁶Lil scintillator

KSU Electrical parameters

Parameter	Value	$\pi C_0 V_0 (1+k) \qquad C_0 \frac{1}{T}$
C _o	12.5 µF	$I_1(kA) = \frac{-1}{T}$
V _{max.}	40 kV	$r = \frac{2}{(lnk)} \begin{pmatrix} L_0 \end{pmatrix} \qquad $
Ε	Up to 10 kJ	$\frac{1}{2} - \frac{1}{\pi} \left(\frac{1}{C_0} \right) \xrightarrow{1}{3} \frac{1}{2} \xrightarrow{1}{3} \frac{1}{100} \xrightarrow{1}{100} \xrightarrow{1}{10} \xrightarrow{1}{10$
I _{max}	150: 200 kA	50 - So - S
L _o	91±2 nH	$L_0 = \frac{I^2}{4\pi^2 C_0}$
r _o	1 <u>3±</u> 3 mΩ	-100
	$k = \frac{1}{n-1} \bigg($	$\frac{V_2}{V_1} + \frac{V_3}{V_2} + \dots + \frac{V_n}{V_{n-1}} $ Time (us)

 L_0

 r_0

S

Average reversal ratio

Time of Flight

- (TOF) technique is used to give information on the time-resolved neutron energy.
- Scintillation-photomultiplier system to register the time resolved hard x-ray and neutron pulses.
- BC-418 plastic scintillator optically connected to HAMAMATSU H7195 Photomultiplier (PMT)

KSU-DPF

 $\Delta t =$ 138.74 ns E_n=2.45 MeV

Beam-Target Reaction. (2-11.3 MeV)

X-ray production

X-ray emission processes

1- Bremsstrahlung (Free-Free) Radiation.

Charged particle is accelerated or retarded. Electron accelerated in the coulomb fields of ions. (spectrum)

2- Recombination (Free-Bound) Radiation

Free electron captured into a bound state of an ion. Photons emitted

with the binding and initial electron kinetic energy (spectrum).

3- Line (Bound-Bound transition) Radiation

Electronic transition between the discrete or bound energy levels in atoms, (discrete packets of energy, or "lines", characteristic of the atom/ ion)

Average effective energy measurements

Material	Densit	μ*	E*
	у		
Cui	8.96	14.98±1.82	60±3
Cu2	8.96	17.87±2.34	56±3
Al	2.7	0.79±0.16	61 <u>+</u> 10
Pb	11.34	60.51 <u>+</u> 8.77	59±4
Average			59±3

Different step filters used and its radiography

X-RITE 301 densitometer used to measure the optical density (a), calibrated transmission set (b).

Radiography using KSU-DPF

A- BN connector, B- BNC male to dual

binding post adapter, C- Resistor and D- IC.

An aluminum phantom (1" cube) has a crack and a hole in one side.

Lee model and high inductance devices

- Lee model couples electrical circuit with the plasma focus dynamics, thermodynamics and radiation.
- It computes SXR, neutron yield, pinch current, pinch time..etc.
- A computed current trace is fitted to a typical measured signal by adjusting what is called mass and current factors in both axial and radial phase.
- Developed in 1985 in two phases then upgraded in 2000 to 5phses.

Radiation emission

Max. axial neutron yield	$1.9 imes 10^7~n/shot$ (6 mbar)	³ He detector
Max. radial neutron yield	$1.05 imes 10^7 ext{ n/shot}$ (6 mbar)	⁶ Lil Detector
Neutron energy	2.45 MeV	Time of flight
lon energy	Up to 130 keV	Faraday cup
Hard X ray average effective energy	59±3 keV	Step filters and X- ray film

Lee model and high inductance devices

5-phase Lee model is found adequate for fitting all plasma focus with low static inductance L_o, for example the PF1000 which trace shown in the figure

The KSU PF current trace has an extended dip (ED) beyond the regular dip (RD) computed by the 5-phase model.

- An extra phase was added by modeling an instability phase using fitted anomalous resistance terms.
- Devices was divided into T1 (low inductance) and T2 (high inductance).

Lee, S H Saw, A E Abdou & H Torreblanca, "Characterizing Plasma Focus Devices- Role of the Static Inductance-Instability Phase Fitted by Anomalous Resistances", J Fusion Energy, DOI 10.1007/s10894-010-9372-1

Explosive detection methods

Human and Biological based Methods

Using trained dogs or manual inspections by well-trained people (Risky)

Trace-based Explosive Detections

By detecting chemical trace of explosive material residues

Nonionizing Radiation-based Methods

By using electromagnetic waves in different scales of frequencies like radiofrequency, Giga or Terahertz

Explosive detection methods

- Nuclear-Based Explosive Detection Methods
 - > Neutron Interrogation Methods
 - High penetration power and not affected by electromagnetic waves.
 - Interaction with the nuclei to produce characteristic γ -rays.
 - Thermal and fast neutrons can be used in continuous or in pulsed form.

Explosive detection methods

Nuclear- based explosive detection methods

- X-ray based scanning methods:
 - Conventional transmission X-ray radiography
 - X-ray computed tomography (CT)
 - Dual energy X-ray CT
 - Scatter imaging (Back scattering Imaging system)

Nomenclature

- A target is an object under study that contains a sample.
- A sample is **explosive** if it is like a nitrogen-rich explosive.
- A sample is **inert** if it is not explosive.
- An interrogated sample is **<u>suspect</u>** if it is not clearly explosive or inert.
- **True positive (TP):** Correctly identified explosive.
- **True negative (TN):** Correctly identified inert.
- False positive(FP): Inert is identified as explosive.
- False negative (FN): Explosive identified as inert.

Signature- based radiation scanning (SBRS)

- Developed by Dunn at K-state.
- Active interrogation to detect explosives at standoff distances.
- The scattered or generated radiation from the target is collected by different detectors, producing signatures.
- A collection of different signatures for each unknown target is then compared to a template.
- The template is a collection of the same number of signatures for a known explosive-like sample.
- Template matching involves forming a Figure-of-Merit (FOM).

• Figure of Merit

$$\zeta = \frac{1}{N} \sum_{j=1}^{J} \alpha_j \frac{\left(\beta R_j - S_j\right)^2}{\beta^2 \sigma^2(R_j) + \sigma^2(S_j)}$$

R_j : Response vector , J is the number of signatures.

S_j : Template vector,

 $\sigma^2(R_j), \sigma^2(S_j)$: Response and target variances, respectively.

 $\boldsymbol{\alpha}_{j}$: Normalized positive weight factor ($\alpha_{j} = \frac{\omega_{j}}{\sum_{j=1}^{j} \omega_{j}}$)

Normalizing factor

$$N = \sum_{j=1}^{J} \alpha^2{}_j \frac{S_{jl}{}^2}{\sigma^2(S_{jl})}$$

 $\boldsymbol{\beta}$: A scaling factor that accounts for differences in the conditions.

Standard deviation

$$\sigma(\zeta) = \frac{2}{N} \left[\sum_{j=1}^{J} \frac{\left(\alpha_j (\beta R_j - S_j)\right)^2}{\left(\beta^2 \sigma^2 (R_j) + \sigma^2 (S_j)\right)} \right]^{1/2}$$

Cut-off value (f_0)

• For $(f - \sigma) > f_0$ -----> Inert (TN). • For $(f + \sigma) < f_0$ -----> Explosive (TP).

Sensitivity & specificity

 $Sensitivity = \frac{Number of true positive}{Total number of explosive samples used}$

 $Specificity = \frac{Number of true negatives}{Total number of inert samples used}$

Experimental set-up

- X-ray Source (DPF).
- Targets: 5 gallons (9), 1 gallon (12), quart (11)

35% N fertilizer FertC	28% N fertilizer FertD	50/50 Mixture FertMix	Ammonium nitrate
Chalk	Rubber Mulch	Polyethylene	Aluminum
Sugar	Graphite	Sand	

- X-ray detectors.
 - A Canberra, 3x3 in., Nal(Tl), model 3M3/3-X.
 BC-418 plastic scintillator, 2 × 1 in. HAMAMATSU PMT, model H7195.

D1: Bare Plastic scintillator	D2: Filtered NaI(Tl) scintillator
D3: Bare NaI(Tl) scintillator	D4: Bare NaI(Tl) scintillator

Experimental work

- obtained for the direct detector
- Average of 10 shots

Detector responses

Detectors' responses for 5-gallon cans.

D1: Bare Plastic scintillator.D2: Filtered NaI(Tl) scintillatorD3: Bare NaI(Tl) scintillator.

Figure of merit (FOM)

1-gallon samples

	5-gallons	1-gallon	Quart
Total # samples	8	11	10
Inert	6	8	7
Explosive-like	2	3	3
True (+ve)	2	3	3
True (-ve)	3	4	2
False (+ve)	2	2	1
False (-ve)	о	0	О
Suspect	1	2	4
Sensitivity%	100	100	100
Specificity%	50	50	28.6

Summary of experimental results

Comparison between experimental and simulation response for 1-gallon samples

- Hard to bring real explosives to the lab.
- More samples can be investigated using real explosives.
- Reasonable agreement between experimental and simulated detector responses.

Outline

- Introduction to dense plasma focus, construction and dynamins.
- KSU-DPF specifications and characterization.
- X-ray emission characteristics of the KSU-DPF.
- Introduction to explosive detection methods.
- Signature- based radiation scanning (SBRS).
- Experimental work for explosive detection.
- Simulation work.
- Conclusions.

• MCNP-5: General purpose code used to simulate coupled neutron, photon and electron transport.

Cell card	 Cell, material number, density and importance to both neutrons and photons
Surface card	 Surfaces used to form the geometry
Data specification card	 Source type, the output type (tally), material specification, cross section library in addition to any other variance reduction technique

- A: Source.
- B: Target material 1-gallon.
- C: Bare NaI(Tl).
- D: Filtered NaI(Tl).
- E: Bare plastic scintillator.
- F: Lead shielding.

1	Rubber	15	Chalk
	mulch		
2	Ash	16	Natural
			rubber
3	Gasoline	17	Wax
4	Ammonia	18	Polyethylene
5	FertC	19	Water
6	FertD	20	Sugar
7	FertMix	21	Nitroglycerin
8	Sand	22	Glass
9	Soil	23	Ceramic
10	TNT	24	Aluminum
11	Ammoniu	25	Granite
	m nitrate		
12	RDX	26	Iron
13	Graphite	27	copper

FOM of 3 responses vs. different combinations of 2 responses using (TNT template)

Comparison between the FOM for 3 responses using different templates.

A Summary of simulation results for KSU-DPF

	1 <i>0</i>	2σ	3 σ
	(68% confidence)	(95% confidence)	(99% confidence)
Inert samples	22	22	22
Explosives	5	5	5
True positives	5	5	5
True negatives	18	17	15
False positives	1	1	1
False negatives	0	0	0
Suspect	3	4	6
Sensitivity %	100	100	100
Specificity %	81.8	77.3	68.2

GN1 Simulation

• 4.7 kJ device when charged at 30 kV and HXR of ~ 100 keV

	1 σ (68% confidence)	2 σ (95% confidence)	з σ (99% confidence)
Inert samples	22	22	22
Explosives	5	5	5
True positives	5	5	5
True negatives	17	16	14
False positives	3	3	3
False negatives	0	0	0
Suspect	2	3	5
Sensitivity %	100	100	100
Specificity %	77.3	72.7	63.6

GN1 Simulation

Conclusion

- The KSU-DPF was commissioned to be used as a multiradiation source; used for radiography and explosive detection.
- The device has an inductance of 91 \pm 2 nH and resistance 13 \pm 3 m Ω and can store energy up to 10 kJ.
- Experiments showed that the devise emits around 1.9×10^7 n/pulse of 2.45 MeV neutrons at an optimum pressure of 6 mbar of deuterium.
- The HXR average effective energy was measured to be 59±3 and the spectrum ranges from 20 up to 120 MeV with a most probable value of 53 MeV.

Conclusion

- DPF allows rapid interrogation because of the short pulse time; good for high-volume testing.
- We tested simple targets with uniform contents.
- Experimental results with 100% sensitivity and reasonable specificity (50% for gallon and larger samples) were obtained.
- Simulations obtained similar results with real explosives and more inert materials with 100% sensitivity and 82, 77 and 68 specificity for 68, 95 and 99% of confidence.

