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Plasma as a particle (SPM)

The plasma is a collection of charged particles. So in order to
study various physical phenomena inside the plasma, we have to
solve the equations of motion:

dri
dt

= vi , (1)

mi
dvi
dt

= F, (2)

for each particle.
Where the position vector r is given by

r = xx + yy + zz. (3)

and the velcoity vector v is given by

v = vxx + vyy + vzz. (4)

F is the combined influence forced, due to the externally applied
forces and the internal forces generated by all the other plasma
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Plasma as a gas (Kinetic model)

So,the three-dimensional plasma kinetic equation becomes:[
∂

∂t
+ v · ∇r +

F

ms
· ∇v

]
fs(t, r, v) =

(
∂fs
∂t

)
coll

(5)

Special cases:

I- If
(
∂fs
∂t

)
coll

= C (fs): It is called ’Boltzmann’ equation, where
C (fs) is the Coloumb collision operator.

II- If
(
∂fs
∂t

)
coll

= FP(fs): It is called ’Fokker-Plank’ equation,
where FP(fs) is the FP collision operator.

III- If
(
∂fs
∂t

)
coll

= 0: It is called ’Vlasov’ equation. Thus the
’Vlasov’ equation (??) can be simply stated as

dfs
dt

= 0, (6)
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Plasma as a fluid (Fluid model)

∂Ns

∂t
+∇ · [Nsus ] = 0,

msNs

[
∂

∂t
+ us · ∇

]
us = qsNs

(
E + us × B

)
−∇Ps +∇ ·Πs + Rij

∂ 3
2 Ps

∂t
+∇ · (3

2
Pus) = Ps∇ · us +∇ · qs + Rij

Gauss’ Law ∇ · E =
ρq
ε0
,

Gauss’ Law ∇ · B = 0,

Faraday’s Law ∇× E = −∂B
∂t

Ampére’s Law ∇× B = µ0J + µ0ε0
∂E

∂t
,

The charge density ρq =
∑

qsNs ,

The current density J =
∑

qsNsus
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WHAT ARE Rogue WAVES?

In oceanography:

i- The amplitude exceeds 3 times the average amplitude, i.e.
Nonlinear Wave

ii- Appear from nowhere and disappear without trace, i.e.
Localized in space and Localized in time

iii- There is a dip before the hump, i.e.
Focused the energy
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DO Rogue WAVES REALLY EXIST ?

(a) Norwegian tanker

Wilstar, Agulhas cur-
rent (1974)

(b) Oil freighter Esso

Languedoc, coast of
Durban (1980)

(c) Draupner Plat-

form, the North Sea
(New Year’s Day 1995)
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[Credit: D.R. Solli, C. Ropers, P. Koonath, B. Jalali, Nature 450, 1054 (2007).]
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[Credit: B. Kibler, et al, Nat. Phys. 6, 790 (2010)]
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[Credit: A. Chabchoub et al, Phys. Rev. Letters 106, 204502 (2011).]
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[Credit: H. Bailung et al, PRL 107, 255005 (2011)]
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[Credit: Ya-Yi Tsai et al, Nature (Physics) (2016)]
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Linear Modulated Wavepackets (AM, FM)
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Research Questions

- Questions need to be addressed:

Is this the case in a nonlinear medium?

Is Rogue wave a critical phenomena?

Is Rogue wave unpredictable phenomena, i.e.
Probabilistic phenomena or Deterministic phenomena?

What is the mechanism of formation?

What are the conditions of the existence?
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Plasma System

System: electrons -ions

Boundary Conditions: L→ ±∞ (Unbounded).

Initial conditions (t=0) (Equilibrium state):

ne0 = ni0 = n0,

φ0 = 0,

E0 = 0,

Te0 = Ti0 = T0

Perturbations: Electrical + Thermal (Heating)
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Fluid moment equations:

Density nα (continuity) equation:

∂nα
∂t

+∇ · (nα uα) = 0

Mean velocity uα equation:

∂uα
∂t

+ uα · ∇uα = − qα
mα
∇Φ− 1

mαnα
∇pα

Pressure pα equation: [(*) Cold vs. Warm fluid model]

∂pα
∂t

+ uα · ∇pα = −γ pα∇ · uα

The potential Φ obeys Poisson’s eq.:

∇2Φ = −4π
∑

α′′=α,{α′}

qα′′ nα′′ = 4π e (ne − Zi ni + ...)
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Multiscale Perturbation Technique
for envelope dynamics

1st step. The idea relies in defining space and time scales, to
distinguish the fast carrier wave from the slow envelope dynamics:

X0 = x , X1 = ε x , X2 = ε2 x , T0 = x , T1 = ε x , T2 = ε2 x ,

– + modify the differential space/time operators appropriately:

∂

∂x
→ ∂

∂X0
+ ε

∂

∂X1
+ ε2 ∂

∂X2
+ ...

∂

∂t
→ ∂

∂T0
+ ε

∂

∂T1
+ ε2 ∂

∂T2
+ ...
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Multiscale Perturbation Technique
for envelope dynamics

2nd step. Expand the state variables near equilibrium: as

S = S(0) +
n∑

n=−∞
ε
nSn

for S = (n, u, p, φ,A), i.e.

n ≈ n0 + ε n1 + ε
2 n2 + ...

u ≈ 0 + ε u1 + ε
2 u2 + ...

pα ≈ p0 + ε p1 + ε
2 p2 + ...

φ ≈ 0 + ε φ1 + ε
2
φ2 + ...

where ε� 1 is a small real parameter.

3rd step. Allow for multiple phase-harmonics (index l), i.e. multiple phases 2θ, 3θ etc. to be present at
each order n (= 1, 2, ...):

S(n) =
n∑

l=−n

S(l)
n (Xj ,Tj ) e

i l(kx−ωt)

denotes the amplitude of the n−th order contribution, as a series of the l−th harmonic amplitude(s)

S(l)
n = S(l)

n (Xj ,Tj ) (slow, for j ≥ 1).
i.e.

S ' S0 + ε S (1)

1 e i(kx−ωt) + ε
2 [S (0)

2 + S (1)

2 e i(kx−ωt) + S (2)

2 e i2(kx−ωt)] + ...
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Governing Equation (∼ ε3)

Compatibility equation (from m = 3, l = 1), in the form of:

i
∂ψ

∂τ
+ P

∂2ψ

∂ζ2
+ Q |ψ|2 ψ = 0 .

i.e. a Nonlinear Schrödinger–type Equation (NLSE) .

Variables: ζ = ε(x − vg t) and τ = ε2 t;

Dispersion coefficient P:

P =
1

2

∂2ω

∂k2
x

;

Nonlinearity coefficient Q: ...
A (lengthy!) function of k , angle α and Te , Ti , ... → (omitted).
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Nonlinear Frequency Modulation (NFM)

The total potential disturbance then reads:

φ ' ε ψ̂ exp i [kx − (ω − ε2Q|ψ̂|2) t] + · · ·

the net result is
ω → ω − ε2Q|ψ̂|2

n = n(ψ)

which has been verified experimentally!

Fluid: Benjamin-Feir effect,
N. Optics: Kerr effect,
Plasma: nonlinear frequency shift)
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Nonlinear Amplitude Modulation (NAM)

The amplitude of a harmonic wave may vary in space and time:

→
This nonlinear modulation (Benjamin-Feir Instability, Kerr Instability,
Modulation Instability (MI)):
i-Stable → envelope soliton

→ ?
ii- Unstable → Rogue wave

The Peregrine soliton for different values of β(0.2, 0.4, 0.6) with k = 0.1 and δ = 1. The waveform is

practically not affected by small variations of the negative-ion concentration.



Nonlinear Amplitude Modulation (NAM)

The amplitude of a harmonic wave may vary in space and time:

→

This nonlinear modulation (Benjamin-Feir Instability, Kerr Instability,
Modulation Instability (MI)):
i-Stable → envelope soliton

→ ?
ii- Unstable → Rogue wave

The Peregrine soliton for different values of β(0.2, 0.4, 0.6) with k = 0.1 and δ = 1. The waveform is

practically not affected by small variations of the negative-ion concentration.



Nonlinear Amplitude Modulation (NAM)

The amplitude of a harmonic wave may vary in space and time:

→
This nonlinear modulation (Benjamin-Feir Instability, Kerr Instability,
Modulation Instability (MI)):

i-Stable → envelope soliton

→ ?
ii- Unstable → Rogue wave

The Peregrine soliton for different values of β(0.2, 0.4, 0.6) with k = 0.1 and δ = 1. The waveform is

practically not affected by small variations of the negative-ion concentration.



Nonlinear Amplitude Modulation (NAM)

The amplitude of a harmonic wave may vary in space and time:

→
This nonlinear modulation (Benjamin-Feir Instability, Kerr Instability,
Modulation Instability (MI)):
i-Stable → envelope soliton

→ ?

ii- Unstable → Rogue wave

The Peregrine soliton for different values of β(0.2, 0.4, 0.6) with k = 0.1 and δ = 1. The waveform is

practically not affected by small variations of the negative-ion concentration.



Nonlinear Amplitude Modulation (NAM)

The amplitude of a harmonic wave may vary in space and time:

→
This nonlinear modulation (Benjamin-Feir Instability, Kerr Instability,
Modulation Instability (MI)):
i-Stable → envelope soliton

→ ?
ii- Unstable → Rogue wave

The Peregrine soliton for different values of β(0.2, 0.4, 0.6) with k = 0.1 and δ = 1. The waveform is

practically not affected by small variations of the negative-ion concentration.



Rogue wave in Negative ion plasmas

[Credit: H. Bailung et al, PRL 107, 255005 (2011)]
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Plasma δ (= Zn/mn

Zp/mp
) βcr (= n0nZn

n0pZp
)

H+ − H− − e− 1 0.26

Ar+ − F− − e−(Bailung PRL 2011) 2.1 0.102

H+ − O−2 − e− 0.03 0.66

K+ − SF−6 − e− 0.267 0.54

Xe+ − F− − e− 6.895 0.02

Ar+ − O− − e− 1.33 0.2
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Conclusions & Summary

Amplitude modulation may be due to various mechanisms, e.g. ponderomotive effects, wave-wave
coupling, carrier-wave self-interaction (automodulation); we have here focused on the latter scenario

Automodulation can be modelled via a straightforward multiscale technique

Analytical theory predicts:

* Harmonic generation
* NL frequency shift
* Modulational instability: Wavepacket propagation is stable for

long wavelengths; MI sets in for shorter wavelengths (long
wavenumbers)

* Envelope solitons are simply modeled via NLS and related
equations

* Rogue waves are random events, may be tedious to detect
experimentally;

Wavepacket propagation is stable for long wavelengths; Modulational instability sets in for shorter
wavelengths (long wavenumbers);

Carrier self-interaction (automodulation) is efficiently modeled via a perturbation theory, which also
accounts for a) harmonic generation, b) modulational instability, and c) envelope soliton formation;
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Thanks for your attention!
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